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1 Recall
In the previous lecture, we introduce a problem (P ) and the feasible set K as follows:

inf
x∈Rn

f(x) subject to

{
gi(x) ≤ 0, i = 1, . . . , ℓ

hj(x) = 0, j = 1, . . . ,m
(P )

where f, gi, hj ∈ C1, and

K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , ℓ, j = 1, . . . ,m}

We have the following theorems related to KKT condition and proved in the lecture 2.

Theorem 1. Assume that x∗ ∈ K is an optimal solution to (P ), then there exists p0 ≥
0, p1, . . . , pℓ ≥ 0, q1, . . . , qm ∈ R such that the following holds:

(p0, p1, . . . , pℓ, q1, . . . , qm) ̸= 0
ℓ∑

i=1

pigi(x
∗) = 0 ⇐⇒ pigi(x

∗) = 0, ∀i = 1, 2, . . . , ℓ

p0∇f(x∗) +
ℓ∑

i=1

pi∇gi(x
∗) +

m∑
j=1

qj∇hj(x
∗) = 0

Also, we discuss the Mangasarian Fromovitz Qualification condition last week:

1⃝ the family of vectors (∇h1(x), . . . ,∇hm(x)) is linearly independent.

2⃝ there exists a vector v ∈ Rn satisfying

⟨∇hj(x
∗), v⟩ = 0, ∀j = 1, . . . ,m

and
⟨∇gi(x

∗), v⟩ < 0, ∀i ∈ I(x) := {k : gk(x) = 0}.
Then the constraint K is qualified at x ∈ K.

Therefore, together with optimal solution x∗ and the qualification, we have the following:

Let x∗ ∈ K be a solution to (P ) and assume that K is qualified at x∗. Then there exists
λ1, · · · , λℓ ≥ 0 and µ1, · · · , µm ∈ R such that

ℓ∑
i=1

λigi(x
∗) = 0

∇f(x∗) +
ℓ∑

i=1

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗) = 0
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Remember that we still not yet finished the proof mentioned in the claim 2 of the lecture 2. We
will discuss the proof for the claim now. Let us simply recall the setting.

Define

fN(x) := f(x) + ∥x− x∗∥2 + N

2

 ℓ∑
i=1

max(0, gi(x))
2︸ ︷︷ ︸

g+i (x)

+
m∑
j=1

h2
j(x)


Then, by computation, we can check that

• fN(x
∗) = f(x∗)

• fN(x) ≥ f(x), ∀x ̸= x∗

Next, we claim that:

There exists ε0 > 0 such that for all 0 < ε < ε0, there exists Nε ∈ N
satisfying fNε(x) > fNε(x

∗) = f(x∗) for all x ∈ {z : ∥z − x∗∥ = ε}.

Proof. We prove by contradiction. If the claim is not true, then there exists ε > 0 such that for all
N > 0, there exists some xN ∈ {z : ∥z − x∗∥ = ε} satisfies:

fN(xN) ≤ fN(x
∗) = f(x∗) < +∞

Note that {z : ∥z − x∗∥ = ε} is a compact set in R, then we choose sequence {xN}N≥1 in the compact
set, there exists a subsequence {xNk

}k∈N converges to x̄ ∈ {z : ∥z − x∗∥ = ε}, and

sup
Nk

(
C +

Nk

2

(
ℓ∑

i=1

(g+i (xNk
))2 +

m∑
j=1

h2
j(xNk

)

))
≤ sup

Nk

fNk
(xNk

) ≤ f(x∗) < +∞

This implies that
lim sup
N→+∞

N · ℓN(x) < +∞ =⇒ lim
N→+∞

ℓN(x) = 0

So, we have
ℓ∑

i=1

(g+i (x̄))
2 +

m∑
j=1

h2
j(x̄) = 0

and hence x̄ ∈ K. So from the above inequality, taking limit N → +∞ yields:

lim
N→+∞

fN(xN) = f(x̄) + ∥x̄− x∗∥︸ ︷︷ ︸
ε

≤ f(x∗)

This is a contradiction to the fact that x∗ is the minimizer, i.e.

f(x̄) ≥ f(x∗), ∀x̄ ∈ K
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2 Cone
Definition 1. Let x ∈ K, we define the tangent cone of K at point x by

TK(x) :=

{
v ∈ Rn :

there exists sequence (sk, vk)k≥1 ⊂ R+ × Rn such that
sk ↘ 0+, vk → 0 and x+ skvk ∈ K, ∀k ≥ 1

}

Figure 1: Tangent Cone

Example 1. In R2, and K = {x : ∥x∥ ≤ 1}.

• If x ̸∈ ∂K, then Tk(x) = R2.

• If x ∈ ∂K, then Tk(x) =
{

all vectors in R2 towards the interior of K
}

Figure 2: Example 1

After we discuss the tangent cone of a set K, we introduce the following lemma.
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Lemma 2. TK(x) is a closed cone.

Proof. 1. To prove that TK(x) is a cone, it is sufficient to prove that

If v ∈ TK(x), then λv ∈ TK(x) for all λ ≥ 0.

• Case 1: λ = 0 or v = 0, then λv = 0 ∈ TK(x).

• Case 2: λ ̸= 0 and v ̸= 0
Then there exists (sk, vk)k≥1 ⊂ R+×Rn satisfies the conditions in the definition of TK(x).
We define s̄k :=

sk
λ

, v̄k := λvk. Then, it follows that{
(s̄k, v̄k) → (0+, λv)

x+ s̄kv̄k = x+ skvk ∈ K
=⇒ λv ∈ TK(x)

2. Next, it remains to prove TK(x) is closed. We take (vn)n≥1 ⊂ TK(x), vn → v. Then there

exists (sn,kn , vn,kn)n≥1 such that sn,kn <
1

n
and ∥vn,kn − vn∥ <

1

n
such that x+ sn,knvn,kn ∈ K.

Then, together with vn,kn → v and sn,kn → 0 as n → +∞, we can prove v ∈ TK(x).
Thus, TK(x) is closed cone and the proof is finished.

Lemma 3. Let K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , ℓ, j = 1, . . . ,m} and x ∈ K. Then

TK(x) ⊆
{
v ∈ Rn :

⟨∇hj(x), v⟩ = 0, ∀j = 1, . . . ,m,
⟨∇gi(x), v⟩ ≤ 0, ∀i = 1, . . . , ℓ satisfying gi(x) = 0

}
= J

Proof. Let v ∈ TK(x). Then by definition, there exists sequence (sk, vk) ∈ R+ × Rn such that
sk ↘ 0+, vk → v and x+ skvk ∈ K.

1. For all i = 1, . . . , ℓ satisfying gi(x) = 0, one has gi(x+ skvk) ≤ 0. Using taylor expansion, we
have

gi(x)︸︷︷︸
=0

+sk ⟨∇gi(x), vk⟩+ skO(sk) ≤ 0

Dividing sk > 0 on both sides then taking limit k → +∞, we have

⟨∇gi(x), v⟩ ≤ 0

2. For all j = 1, . . . ,m, one has hj(x+ skvk) = 0. Using taylor expansion again yields:

hj(x)︸ ︷︷ ︸
=0

+sk ⟨∇hj(x), vk⟩+ skO(sk) = 0

Dividing sk > 0 and taking limit k → +∞, we have

lim
k→+∞

hj(x)︸ ︷︷ ︸
=0

+ ⟨∇hj(x), vk⟩+O(sk)

 = 0 =⇒ ⟨∇hj(x), v⟩ = 0

Together with 1 and 2, we prove v ∈ J . Since v ∈ TK(x) is arbitrary, so this proves TK(x) ⊆ J .
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3 Checking Qualification
Lemma 4. (Farkas’s lemma) Let c ∈ Rn, (ci)i=1,...,k ⊆ Rn and (dj)j=1,...,m ⊆ Rn. Assume that for
all v ∈ Rn, we have {

⟨dj, v⟩ = 0, j = 1, . . . ,m

⟨ci, v⟩ ≤ 0, i = 1, . . . , k
=⇒ ⟨c, v⟩ ≤ 0

Then there exist λi ≥ 0, i = 1, . . . , k and µj ∈ R, j = 1, . . . ,m such that c =
k∑

i=1

λici +
m∑
j=1

µjdj .

Remarks. Let us accept it for the moment because the proof of this lemma requires the convex duality.
We may discuss this afterwards.

Based on the Farka’s lemma, we introduce the following theorem.

Theorem 5. Let x∗ ∈ K be a solution to (P ). Assume that

TK(x
∗) =

{
v ∈ Rn :

⟨∇gi(x
∗), v⟩ ≤ 0, ∀i = 1, . . . , ℓ satisfying gi(x

∗) = 0
⟨∇hj(x

∗), v⟩ = 0, ∀j = 1, . . . ,m

}
Then, there exists λ1, · · · , λℓ ≥ 0 and µ1, · · · , µm ∈ R such that

ℓ∑
i=1

λigi(x
∗) = 0

∇f(x∗) +
ℓ∑

i=1

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗) = 0

and this is called the Abadie’s qualification condition.

Proof. Note that x∗ ∈ K is the minimizer, so for all v ∈ TK(x
∗), then

f(x∗) ≤ f(x∗ + skvk) = f(x∗) + sk ⟨∇f(x∗), vk⟩+ skO(sk)

dividing both sides by sk > 0 and taking k → +∞ yields ⟨−∇f(x∗), v⟩ ≤ 0. By the Farkas’ lemma,
there exists λi ≥ 0 for all i = 1, . . . , ℓ satisfying gi(x

∗) = 0, and µj ∈ R for j = 1, . . . ,m such that

−∇f(x∗) =
∑

i:gi(x∗)=0

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗)

On the other hand, for those i such that gi(x∗) ̸= 0, we set λi = 0 so that

λigi(x
∗) = 0, ∀i = 1, . . . , ℓ

and

∇f(x∗) +
ℓ∑

i=1

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗) = 0.

Remarks. Note that the Abadie’s qualification condition is much general than the Mangasarian Fro-
movitz Qualification condition. If K satisfies the Mangasarian-Fromovitz condition at x ∈ K, then
it satisfies Abadie’s condition.

— End of Lecture 5 —
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